
Perl as an Embedded Language

Dominik Brettnacher

August 28, 2004

Abstract

The second part of the seminar on Config-
urable Systems dealt with programming lan-
guages that were specifically designed for em-
bedding into applications.

Unlike these languages, Perl was primarily
designed as a language for extracting and pro-
cessing information, while the idea of embed-
ding Perl only came up later.

In the following, I will compare the Perl lan-
guage as well as its API with Tcl, Scheme
and Lua. Furthermore, I will present a Perl-
enhanced Network Monitor as an example for
an application that benefits from a scripting
language.

1 Motivation

During the second part of the seminar we had a
detailed look into several embedded languages
and compared their properties:

• Tcl is a language with a shell-like syn-
tax. The interface for embedding is clean
and simple. However, Tcl merely supports
strings as the only data type, which makes
it difficult to handle complex data struc-
tures.

• libscheme introduces more advanced fea-
tures such as lexical scoping and com-
plex data types (e.g. lists and first-class
functions). The API for embedding is
slightly more complex, compared to Tcl.

But main drawback of Scheme is its fully-
parenthesized syntax, which makes it dif-
ficult to use, as least for a typical end user.

• Lua, a language designed to be simple and
flexible aims to provide the advantages
of both Tcl and Scheme. Lua’s features
such as fallbacks and tables are extensi-
ble, while both syntax and the API remain
relatively small.

In contrast to this, the Perl language was
originally not designed to be embedded into
host applications: while the roots of Perl date
back to the year 1987[2], the first application
that actually embedded Perl[1] was developed
in 1996. It will be interesting to see how
the Perl interface compares to that of the lan-
guages already known. What has become ap-
parent from the languages already considered
is that the complexity of the API grows to-
gether with the complexity of the language it-
self.

2 The Perl Language

As an introduction, I am going to present some
properties of the Perl language. I have cho-
sen them either because they are important
with respect to the embedding API or because
they are interesting in comparison with the
languages discussed earlier.

1

2.1 Data Types

Perl distinguishes three data types: first, there
are scalar values (SV) which are used to repre-
sent numbers and strings. A number is trans-
parently converted into a string and vice versa
if needed. A reference (RV) is another type
of a scalar value and can be thought of as a
pointer to another value (or a subroutine).

The second type is the array (AV). An ar-
ray consists of several scalar values indexed by
number (like in C). The most important type
however is the associative array, better known
as hash (HV). Hashes are indexed by string.

Each data type has its own namespace, that
is, a scalar $address can coexist with an array
of the same name (@address). A variable of a
certain type is referred to by using the prefix
for that type. Scalar values are prefixed with
$, array and hash values are prefixed with @
and %, respectively.

As stated above, it is possible to create refer-
ences to any data type. The predominant data
type used in Lua is the table. The properties
and the behaviour of a table can be compared
to a hash reference in Perl. Consequently, Perl
objects are usually represented by hash refer-
ences.

2.2 Subroutines

Perl’s subroutines are defined with the sub key-
word. It is possible to define an anonymous
subroutine using a reference and pass it as a
parameter or assign it to a variable.

The function call arguments are passed as
a list and can be accessed through the special
array @ . Similarly, the return value is also a
list. It is important to note that this interface
does not allow to pass complex values. Any
hash or array value would be degraded to a
list if passed to or returned from a function.
However it is possible to pass references to any
complex value.

3 The Perl Interface

3.1 Embedding

The process of embedding a Perl interpreter
into an application written in C is similar to
the other languages. It is documented in [5],
a part of the Perl core documentation. The
interpreter itself is available as a library that
has to be linked to the host program. A spe-
cial Perl module provides the compiler options
needed to accomplish this task.

#include <EXTERN.h>
#include <perl.h>

int main(int argc , char ∗argv [])
{

static PerlInterpreter ∗my perl;

my perl = perl alloc() ;
perl construct(my perl);

perl parse(my perl, NULL, argc, argv,
NULL);

perl run(my perl);

perl destruct (my perl);
perl free (my perl);

return 0;
}

Listing 1: A Perl interpreter embedded into C

Listing 1 shows the function calls needed to
embed an interpreter. The most important
functions are perl parse() and perl run().
perl parse() tells the interpreter to parse a

chunk of code. This function expects command
line arguments (i.e. argc and argv). This ap-
proach makes the embedded interpreter work
like the stand-alone Perl interpreter. It is ei-
ther possible to supply Perl code directly (us-
ing the -e flag from the command line) or a file
name. If this is not the desired behaviour, one

2

has to supply ”dummy” arguments, as there is
no alternative function which does not expect
argc and argv.

#include <EXTERN.h>
#include <perl.h>

int main(int argc , char ∗argv [])
{

static PerlInterpreter ∗my perl;

my perl = perl alloc() ;
perl construct(my perl);

perl parse(my perl, NULL, argc, argv,
NULL);

call pv(”example2”, G DISCARD |
G NOARGS);

perl destruct (my perl);
perl free (my perl);

return 0;
}

Listing 2: Calling a subroutine explicitly

If the code is syntactically correct,
perl run() can then execute the parsed
code. Apart from perl run(), which will
start at the first statement supplied, it is
possible to call a subroutine explicitly. The
example in listing 2 shows how a subroutine
named example2 is called.

3.2 Converting and Passing Values

Like Lua, Perl uses a stack in order to pass
function arguments back and forth. Usually,
each argument value needs to be converted into
a Perl value. It is also possible to use an ar-
ray of C strings as the arguments for a sub-
routine call, resembling the Tcl interface. The
perl call argv() will convert the strings into

Perl SVs and call the subroutine which was
given as a parameter.

int call example3(int a , int b, int c)
{

int count, result ;

dSP;
ENTER; SAVETMPS;

PUSHMARK(SP);
XPUSHs(sv 2mortal(newSViv(a)));
XPUSHs(sv 2mortal(newSViv(b)));
XPUSHs(sv 2mortal(newSViv(c)));
PUTBACK;

count = call pv(”example3”, G SCALAR);
SPAGAIN;

result = POPi;
PUTBACK;

FREETMPS; LEAVE;

return result ;
}

Listing 3: Calling a subroutine which takes
three integers and returns one

For more complex function calls, the argv
method is no longer sufficient, because it only
converts flat values. In order to push refer-
ences, arrays and hashes on the stack, they
have to be created manually. The Perl API
provides a number of functions in order to cre-
ate and change scalar, array and hash values.

Listing 3 shows how three integers are con-
verted and passed to a subroutine. After call-
ing the subroutine, the return value is popped
from the stack and converted to an integer.
The glue code needed to call a function consists
of several statements (shown in italics) which
are needed in order to manage the stack. In
contrast to this, the Lua API does not need

3

Figure 1: Perl API functions
Function Purpose
∗SV newSViv(int) Creates a new scalar value from an integer
∗SV newSVnv(double) Creates a new scalar value from an float
∗SV newSVpv(char∗, int) Creates a new scalar value from a string
sv setiv (SV∗, int) Sets the value of a scalar value to an integer
sv setnv(SV∗, double) Sets the value of a scalar value to a float
sv setpv(SV∗, char∗) Sets the value of a scalar value to a string
∗AV newAV() Creates an empty array
void av push(AV∗, SV∗) Adds a scalar value to the end of an array
∗SV av pop(AV∗) Pops a scalar value from the end of an array
∗SV av shift(AV∗) Removes a value from the beginning of an array
void av unshift(AV∗, int n) Adds n empty values to the beginning of an array
∗∗SV av fetch(AV∗, int key, int lval) Fetches the element at position key
∗∗SV av store(AV∗, int key, SV∗ val) Stores a scalar value at position key
∗HV newHV() Creates an empty hash
∗∗SV hv store() Stores a scalar value with key as the key
∗∗SV hv fetch() Fetches the value stored for key
∗SV hv delete() Deletes the value stored for key

this kind of explicit stack management, the
glue code only consists of the push/pop op-
erations as well as the conversion functions.

Similar to the Lua API, Perl values are rep-
resented by pointers to opaque data structures.
The API provides a number of functions to
create and change these values (see figure 1).
A documentation of all API functions can be
found in [4] and [3].

After being created, Perl values usually have
to be pushed onto the stack. The XPUSH macros
extend the stack if needed and put the supplied
values on it. Similar, the POP macros take a
value from the stack and convert it back into
a primitive C value.

The environment of the Perl interpreter
can be accessed with get sv(), get av() and
get hv() for the respective data types.

3.3 Memory Management

The Perl interpreter does garbage collection us-
ing reference counts, therefore memory man-

agement works automatically most of the time,
although there are three situations in which the
counter has to be dealt with manually.

If a reference (RV) is created, the developer
must decide if the counter of the referenced
value has to be incremented or not. For ex-
ample if a hash reference is created in the host
application in order to pass it to a Perl sub-
routine, the counter of the hash value usu-
ally has not to be incremented. Having re-
turned the reference to the subroutine, it is
usually no longer needed at the host applica-
tion and would result in a memory leak. Be-
cause of this, the API provides two functions
to influence the counter on creation of a ref-
erence: newRV noinc() does not increment it
while newRV inc() would do so.

The second case are operations on arrays and
hashes. The counter of a scalar that is added to
an array or a hash is usually not incremented.
This is convenient for the usual case of a scalar
being created only to insert it into a complex

4

data structure.
In order to ease the management of refer-

ence counters, Perl provides a concept called
”mortality”. The counter of a value marked
as mortal will be decremented at ”a short
time later”[4]. In listing 3 for example,
sv 2mortal() is used in order to mark the
scalars as mortal. As a result, they will
automatically be destructed as part of the
FREETMPS statement.

3.4 Pattern matching

Perl’s pattern matching capabilities and its
regular expression engine are one of its great-
est strengths. The most frequently used id-
ioms are $string = m/pattern/ which tests
if a string matches a regular expression and
$string = s/pattern/replacement/ which
substitutes the occurences of a pattern in a
string with a replacement. The latter is very
powerful, because replacement can be a com-
plex expression, too.

It is not possible, however, to use the reg-
ular expression directly from C. The Perl
documentation[5] recommends to use glue
functions which create and execute the Perl
code shown above at run-time. Obviously this
is error-prone and needs to be done very care-
fully, because special characters have to be
quoted appropriately.

3.5 Error handling

In order to catch run-time errors, the usual ap-
proach in Perl is to enclose a block in an eval
{} bracket (it is important to say that this is
not the same as passing a string to eval in
order to parse and execute it). This approach
prevents the interpreter from exiting after fatal
run-time errors.

Instead of using eval {}, the call * API
functions support the G EVAL flag, which has
the same effect.

3.6 Embedding C into Perl

Using C code from Perl (that is, the opposite
direction than the rest of this document de-
scribes) is generally more convenient than em-
bedding an interpreter. In order to make a
C library accessible from Perl, the necessary
glue code can be written in a meta-language
(XS). It is even possible to automatically gen-
erate parts of the glue code from header files
using the h2xs tool. XS helps to convert C
data structures into Perl values using a con-
cept of typemaps. A lot of the modules found
in CPAN1 were built using this technique.

4 Network Monitoring

As a case study of a Perl interpreter embed-
ded into an application, I decided to take a
software (”AMON”) which does network mon-
itoring and make it extendable through the
scripting language. AMON is written in C
and works by checking network services like
HTTP, SMTP and others periodically. It can
be configured at run-time by a database inter-
face. Each service type is handled by a module,
which is written in C. They are given a descrip-
tion of the service to be checked in a URL-
like format as well as additional details such as
an ID for logging purposes. The handler then
takes this information, does the actual check
and then returns its results. The result con-
tains a status flag and two integer values which
can contain information about packet loss, la-
tency time or the amount of data transferred.

The case study consists of Perl meta-module
which makes it possible to write AMON mod-
ules in Perl. Doing this, AMON can benefit
from the advantages of the scripting language:
modules can be written in less time, they don’t
need to be compiled, they can be plugged in

1Comprehensive Perl Archive Network,
http://www.cpan.org

5

at run-time and they can profit from the enor-
mous amount of Perl modules already available
at CPAN (more than 6800 at the time of writ-
ing). This is especially useful if complex ap-
plications should be monitored, because then
it is no longer sufficient to check if a server re-
sponds or not - a complex module can monitor
an application in a more detailed way.

4.1 Implementation

The implementation of the meta-module fol-
lows the principle described above step by step.
After creating an interpreter instance, the pa-
rameters, are converted: for each record of the
C structures, the module creates a new hash
entry using hv store(). After that, it creates
hash references and pushes them on the stack.
As described above, the reference counter of
the hash is not implemented and the references
themselves are marked as mortal.

In order to support several Perl modules,
the following convention is applied: the mod-
ule name perl type leads to a call of the Perl
subroutine named handler type. The resulting
function name is called in a G EVAL context as
explained in order to recover from run-time er-
rors gracefully (e.g. if the subroutine does not
exist).

The called subroutine is expected to return
a hash reference. The meta-module checks if
an error has occured and if the return value
is indeed a hash reference. It then fetches the
result values from the hash and returns them
to the host application.

5 Conclusion

The embedded Perl interpreter works flaw-
lessly in practice, though its API is, as ex-
pected, more complex than that of the lan-
guages discussed earlier. There are mainly
two reasons for this: first, the language it-
self is more complex than Tcl or Lua with

respect to both syntax and feature set. Sec-
ond, embedding was not the primary goal
when Perl was developed. The sheer number
of API functions (more than 400[3]) alone is
very high, compared to Lua (about 100 only2).
But what makes the interface especially com-
plicated is awkward interface of perl run()
together with the numerous stack operations
that have to be done manually.

Apart from the documentation that is part
of the Perl distribution, chapters 18 and 19 of
[6] are a valuable source of information.

Even if the interface is not as clean as that
of Lua and much more complex as that of Tcl,
I think that Perl provides a viable alterna-
tive in practice because of the CPAN and the
widespread distribution of the Perl language.

References

[1] mod perl. http://perl.apache.org.

[2] Jarkko Hietaniemi et al. perlhist - the Perl
history records. The Perl core documenta-
tion.

[3] Jeff Okamoto et al. perlapi - autogenerated
documentation for the perl public API. The
Perl core documentation.

[4] Jeff Okamoto et al. perlguts - Introduction
to the Perl API. The Perl core documen-
tation.

[5] Doug MacEachern Jon Orwant. perlembed
- how to embed perl in your C program. The
Perl core documentation.

[6] Sriram Srinivasan. Advanced Perl program-
ming: foundations and techniques for Perl
application developers. A Nutshell hand-
book. O’Reilly & Associates, Inc., Cam-
bridge, CA, 1st edition, 1997.

2according to the lua.h header

6

A Source code

#include <sys/errno.h>
#include <syslog.h>
#include <EXTERN.h>
#include <perl.h>

#include "amon.h"

amon_value *handler_perl(amon_job *myjob, amon_job_identifier *identifier)
{
PerlInterpreter *my_perl = perl_alloc();
char *perl_argv[] = { NULL, "handler_perl.pl" };
int count;
char *perl_function;
HV *perl_myjob, *perl_identifier;
dSP;

syslog(LOG_INFO,"queue_id %d: %s: %s",myjob->queue_id,__FUNCTION__,myjob->identifier);

myjob->results.value1 = 0;
myjob->results.value2 = 0;
myjob->results.status = AMON_JOB_CRITICAL;
myjob->results.size = AMON_VAR_INT_32;

perl_construct(my_perl);
perl_parse(my_perl, xs_init, 1, perl_argv, NULL);

perl_myjob = newHV();
hv_store(perl_myjob, "queue_id", strlen("queue_id"),
newSViv(myjob->queue_id), 0);

hv_store(perl_myjob, "id", strlen("id"),
newSViv(myjob->id), 0);

hv_store(perl_myjob, "type", strlen("type"),
newSViv(myjob->type), 0);

hv_store(perl_myjob, "identifier", strlen("identifier"),
newSVpv(myjob->identifier, 0), 0);

hv_store(perl_myjob, "valuetype", strlen("valuetype"),
newSViv(myjob->valuetype), 0);

hv_store(perl_myjob, "contract_id", strlen("contract_id"),
newSViv(myjob->contract_id), 0);

perl_identifier = newHV();
if(identifier->protocol != NULL)
hv_store(perl_identifier, "protocol", strlen("protocol"),
newSVpv(identifier->protocol, 0), 0);

if(identifier->username != NULL)
hv_store(perl_identifier, "username", strlen("username"),
newSVpv(identifier->username, 0), 0);

7

if(identifier->password != NULL)
hv_store(perl_identifier, "password", strlen("password"),
newSVpv(identifier->password, 0), 0);

if(identifier->host != NULL)
hv_store(perl_identifier, "host", strlen("host"),
newSVpv(identifier->host, 0), 0);

if(identifier->port != NULL)
hv_store(perl_identifier, "port", strlen("port"),
newSVpv(identifier->port, 0), 0);

if(identifier->path != NULL)
hv_store(perl_identifier, "path", strlen("path"),
newSVpv(identifier->path, 0), 0);

if(identifier->query != NULL)
hv_store(perl_identifier, "query", strlen("query"),
newSVpv(identifier->query, 0), 0);

ENTER;
SAVETMPS;

PUSHMARK(SP);
XPUSHs(sv_2mortal(newRV_noinc((SV*) perl_myjob)));
XPUSHs(sv_2mortal(newRV_noinc((SV*) perl_identifier)));
PUTBACK;

asprintf(&perl_function, "handler_%s", identifier->protocol+5);
count = perl_call_pv(perl_function, G_ARRAY | G_EVAL);
free(perl_function);

SPAGAIN;

if(SvTRUE(ERRSV))
{
STRLEN len;

syslog(LOG_ERR,"queue_id %d: %s: perl: %s",myjob->queue_id,__FUNCTION__,SvPV(ERRSV, len));
}
else
{
SV* result = POPs;

if(SvROK(result))
{
HV* hash = (HV*) SvRV(result);

if(SvTYPE(hash) == SVt_PVHV)
{
SV** fetch;

if((fetch = hv_fetch(hash, "value1", strlen("value1"), 0)) != NULL)

8

myjob->results.value1 = SvUV(*fetch);

if((fetch = hv_fetch(hash, "value2", strlen("value2"), 0)) != NULL)
myjob->results.value2 = SvUV(*fetch);

if((fetch = hv_fetch(hash, "status", strlen("status"), 0)) != NULL)
myjob->results.status = SvIV(*fetch);

if((fetch = hv_fetch(hash, "size", strlen("size"), 0)) != NULL)
myjob->results.size = SvIV(*fetch);

}
else
{
syslog(LOG_ERR,"queue_id %d: %s: perl: return value is no hash reference",

myjob->queue_id,__FUNCTION__);
}

}
else
{
syslog(LOG_ERR,"queue_id %d: %s: perl: return value is no reference",

myjob->queue_id,__FUNCTION__);
}

}

PUTBACK;
FREETMPS;
LEAVE;

perl_destruct(my_perl);
perl_free(my_perl);

syslog(LOG_INFO,"queue_id %d: %s: value1: %llu, value2: %llu",
myjob->queue_id, __FUNCTION__, myjob->results.value1, myjob->results.value2);

return &myjob->results;
}

9

